Nitrogen cycling in coastal Gulf of Finland II: **Nitrification**

Helena Jäntti^{1,2} Adrien Vetterli^{1,2} Elina Leskinen¹ Susanna Hietanen^{1,2}

¹Dept. Biological and Environmental Sciences, Aquatic Sciences, University of Helsinki, FINLAND, firstname.lastname@helsinki.fi

²Tvärminne Zoological Station, University of Helsinki, FINLAND

Introduction

The substrate for denitrification and anammox is produced in nitrification process where ammonia (NH_3) is oxidized to nitrite (NO_2^{-1}) and nitrate (NO_3^{-1}) . Hence nitrification is an important factor controlling nitrogen removal. Nitrification rates are controlled by various environmental parameters, such as oxygen¹ and NH_4^+ availability², temperature^{1,3}, organic load^{3,4} and salinity¹. These parameters vary with season and the purpose of this work is to determine how the seasonal changes in the controlling parameters affect the nitrification rates.

Results

Materials and methods:

Nitrification was estimated in two coastal Gulf of Finland sites (Storfjärden and Muncken) by using the ¹⁵NH₄⁺ oxidation technique^{6,7} and comparing the results to coupled nitrification-denitrification rates measured by the isotope pairing technique (IPT)⁵ (see Hietanen et al.). ¹⁵NH₄⁺ oxidation technique measures nitrification potential and coupling between nitrification and denitrification. It also gives information about the availability of NH₄⁺ in the nitrification layer. This technique requires the measurement of ${}^{15}NO_3^{-}$, ${}^{29}N_2$, and ${}^{30}N_2$ production because nitrification is often so tightly coupled to denitrification that the ¹⁵N-label from NH₄⁺ is instantly transferred to NO_3^- and from there to N_2 gas. The ${}^{15}NO_3^{-}$ production was measured by using the SPINMAS technique⁸ that combines an automated sample preparation unit for inorganic nitrogen species to a quadrupole mass spectrometer.

Figure 1: The amount of ¹⁵N transferred to N₂ gas from different ¹⁵NH₄⁺ additions (100 μ M, 200 μ M and 300 μ M) and coupled nitrification-denitrification (Dn) rates. Dn rates are the actual nitrification rates. The line represents LOI values.

100 µМ	100 µМ	100 µМ
200 µМ	300 µМ	300 µМ
Dn + Nv	Dı	Dı
April 2008	August 2008	November 2008

Figure 2: The amount of ¹⁵N transferred to N₂ gas (dark purple bars) and NO₃⁻ (light purple bars) from different ¹⁵NH₄⁺ additions (100 μ M, 200 μ M and 300 μ M). Dn (dark purple bars) stands for coupled nitrification-denitrification, and Nw (light purple bar) for nitrification producing the NO₃⁻ to the watercolum. Dn+Nw (April), and Dn (August and November) are the actual nitrification rates. The line presents LOI values. Note the different scales from Storfjärden

Results and conclusions:

•In the deeper accumulation basin (Storfjärden), denitrification always captured all nitrate produced in nitrification. Nitrification in April was ammonia limited.

•In the more shallow area (Muncken) denitrification did not always capture all nitrate produced in nitrification and some nitrate diffused to the water column. Nitrification in April and November was ammonia limited. At the ambient ammonia availability, in April there was nitrate efflux from the sediment, and in August and November nitrate influx to the sediment.

MAA- JA VESITEKNIIKAN TUKI

Onni Talas Foundation

•The difference in capability of denitrification bacteria to capture all produced nitrate between the two stations might be organic carbon limitation of denitrification bacteria in Muncken in spring and late fall. Low nitrification potentials in late summer could be caused by inhibition by organic load.

Caffey et al. 2007, ISME J 1
Bodelier et al. 1998, FEMS Microbiol Ecol 25
Starry et al. 2005, J N Am Benthol Soc 24
Blackburn & Blackburn 1992, FEMS Microbiol Let 100

5. Nielsen LP 1992, FEMS Microbiol Ecol 86
6. Nishio et al. 1983, Appl Environ Microbiol 45
7. Jenkins & Kemp 1984, Limnol Oceanogr 29
8. Stange et al. 2007, Isot Environ Health Stud 43